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Abstract

The paper presents an analytical method to solve thermo-electro-elastic transient response in piezoelectric hollow
structures subjected to arbitrary thermal shock, sudden mechanical load and electric excitation. Volterra integral equa-
tion of the second kind caused by interaction between elastic deformation and electric field is solved by using an inter-
polation method. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement
and electric potential in the piezoelectric hollow structures are obtained by means of Hankel transform, Laplace trans-
form, and their inverse transforms. In Section 2, based on spherical coordinates, the governing equation of thermo-elec-
tro-elastic transient responses in a piezoelectric hollow sphere is found and the associated numerical results are carried
out. In Section 3, based on cylindrical coordinates, the governing equation of thermo-electro-elastic transient responses
in a non-homogeneous piezoelectric hollow cylinder is found and the corresponding numerical results are carried out.
The results carried out may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity
in piezoelectric structures.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there is an accelerated effort and notable contributions on the study of thermo-electro-
elastic coupling behavior in some engineering areas, including aerospace, offshore and submarine
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Nomenclature

eij component of strains
ur radial displacement [m]
cij, eij, ai, pij elastic constants [N/m2], piezoelectric constants [C/m2], thermal expansion coefficients

[1/k] and dielectric constants [C2/Nm2]
ki, bii thermal modulus [N/m2K], and pyroelectric coefficient [C/m2K]
rij, Drr the component of stresses [N/m2] and radial electric displacement [C/m2]
w(r, t) electric potential [W/A]
T(r, t) temperature change function [k]
q, t mass density [kg/m3] and time variable [s]
r radial variable [m]
a, b inner and outer radii of piezoelectric hollow sphere or cylinder [m]
CL electro-elastic wave speed [m/s]
x inherent frequency of piezoelectric hollow structures [1/s]
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structures, chemical vessel and civil engineering structures. These structures can be simplified to a trans-
versely isotropic hollow sphere or an orthotropic hollow cylinder, and can be easily exposed to a variety
of temperature fields in different environments. The understanding of mechanical behaviors of piezoelectric
structures is thus of significant importance.

In previous investigations of piezoelectric structures, there are some investigations on hollow sphere. For
piezoelectric materials, in Sinha (1962), the static solution of radial deformation of a piezoelectric spherical
shell under uniform pressures on the internal and external surfaces, and subjected to a given voltage differ-
ence between these surface, coupled with a radial distribution of temperature was successfully solved. Dy-
namic thermal shock in a hollow sphere and spherical elastic shell of arbitrary thickness was investigated by
Zaker (1966, 1968). Parida and Das (1972) studied the transient thermal stresses in a homogeneous ortho-
tropic thin circular disc due to an instantaneous point heat source. Sugano (1979) solved the transient ther-
mal stresses in a homogeneous transversely isotropic, finite cylinder due to an arbitrary internal heat
generation. Due to a constant temperature imposed on one surface and heat convection into a medium
at the other surface, Kardomateas (1989, 1990) obtained the transient thermal stresses in a homogeneous
hollow cylinder. Shul�ga (1990) studied the radial electro-elastic vibrations of a hollow piezoceramic sphere.
Thermal shock in a hollow sphere caused by rapid uniform heating was analyzed by Hata (1991). Wang
(1995, 1996) studied the dynamic thermal stresses in homogeneous isotropic solid cylinders and hollow cyl-
inder subjected to thermal shock. Abd-Alla (1995) solved the thermal stresses in a homogeneous, trans-
versely isotropic, infinite cylindrical shell subjected to an instantaneous heat source. Wang et al. (2001)
obtained dynamic thermal stress in a transversely isotropic hollow sphere. Chen and Shioya (2001) inves-
tigated the piezothermoelastic behavior of a pyroelectric spherical shell. Ding et al. (2003) investigated dy-
namic response of a pyroelectric hollow sphere under radial deformation.

The other hand, many studies on transient responses of non-homogeneous structures have been also
done. Shaffer (1967) obtained the general solutions for a non-homogeneous orthotropic annular disk in
plane stress subjected to uniform pressures at the internal and external surface. The torsional oscillations
of a finite non-homogeneous piezoelectric cylindrical shell were investigated by Sarma (1980). Abd-Alla
et al. (1999) studied the transient thermal stresses in a rotating non-homogeneous cylindrically orthotropic
composite tube and in a non-homogeneous spherically orthotropic elastic medium with spherical cavity,
respectively. Horgan and Chan (1999) investigated the pressured FGM hollow cylinder and disk problems.
Tarn (2001) obtained an exact solution of functionally graded anisotropic cylinders subjected to thermal
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and mechanical loads for a steady-state problem. The electro-elastic problems for a special non-homogene-
ous piezoelectric hollow cylinder had been studied by Hou et al. (2003). The non-homogeneous material has
gained much attention because of its good heat-shielding character as well as other significant superiorities.
To date, investigations on the interactions of thermo-electro-mechanical coupled behavior in homogeneous
piezoelectric structure have mainly considered static interactions between thermal, electric and mechanical
fields and transient interaction between electric field and mechanical field in a non-homogeneous structure.

However, investigations on thermo-electro-elastic transient response of a transversely isotropic piezoe-
lectric hollow sphere and thermo-electro-elastic transient response in a non-homogeneous orthotropic pie-
zoelectric hollow cylinder, subjected to arbitrary thermal shock, sudden mechanical load and electric
excitation have been few.

This paper presents an exact solution for thermo-electro-elastic transient response in piezoelectric hollow
structures subjected to arbitrary thermal shock, radial shock load and electric excitation. The thermo-elec-
tro-elasto-dynamic equation for piezoelectric hollow structures is decomposed into a quasi-static homoge-
neous equation with inhomogeneous boundary conditions and an inhomogeneous dynamic equation with
homogeneous boundary conditions. Using the method described by Lekhnitskii (1981), the quasi-static
question can be exactly solved. The solution to the inhomogeneous dynamic question which satisfies homo-
geneous boundary conditions is obtained by utilizing the corresponding finite Hankel transforms (Cinelli,
1965), and the Laplace transforms. Then, using an interpolation method, Volterra integral equation (Kress,
1989) of the second kind caused by interaction between thermo-elastic field and thermo-electric field is
solved. Thus, the exact expressions for the transient responses of displacement, stresses, electric displace-
ment and electric potential in piezoelectric hollow structures are obtained.

In Section 2, based on spherical coordinates, the governing equation of thermo-electro-elastic transient
responses in a transversely isotropic piezoelectric hollow sphere is found and the associated numerical re-
sults are carried out. In Section 3, based on cylindrical coordinates, the governing equation of thermo-elec-
tro-elastic transient responses in a non-homogeneous piezoelectric hollow cylinder is found and the
corresponding numerical results are carried out. The results carried out may be used as a reference to solve
other transient coupled problems of thermo-electro-elasticity in piezoelectric hollow structures.
2. Thermo-electro-elastic transient responses in a transversely isotropic piezoelectric hollow sphere

2.1. The constitutive relation and governing equation

A spherical coordinate system (r,h,u) with the origin identical to the center of a hollow sphere is used.
For the spherically symmetric problem, we have uh = uu = 0, ur = ur(r, t). For a transversely isotropic pie-
zoelectric hollow sphere subjected to a rapid change in temperature T(r, t), the thermo-electro-elastic tran-
sient responses of the hollow sphere is a spherically symmetric problem, so that he constitutive relations of
a spherically transversely isotropic pyroelectric medium are expressed as (Sinha, 1962; Chen and Shioya,
2001)
rrr ¼ c11
our
or

þ 2c12
ur
r
þ e11

ow
or

� k11T ðr; tÞ ð2:1aÞ

rhh ¼ c12
our
or

þ ðc22 þ c23Þ
ur
r
þ e12

ow
or

� k12T ðr; tÞ ð2:1bÞ

Drr ¼ e11
our
or

þ 2e12
ur
r
� b11

ow
or

þ p11T ðr; tÞ ð2:1cÞ
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k11 ¼ c11ar þ 2c12ah; k12 ¼ c12ar þ ðc22 þ c23Þah ð2:1dÞ

where cij, eij, ai, bij, and p11 are elastic constants, piezoelectric constants, thermal expansion coefficients,
dielectric constants, and pyroelectric coefficients, respectively. rii and Drr are the component of stress
and radial electric displacement, respectively. The equation of motion is expressed as
orrr

or
þ 2ðrrr � rhhÞ

r
¼ q

o
2urðr; tÞ
ot2

ð2:2Þ
where q is the mass density. In absence of free charge density, the charge equation of electro-statics is
oDrrðr; tÞ
or

þ 2Drrðr; tÞ
r

¼ 0 ð2:3Þ
In order to simplify calculation, the following non-dimensional forms are introduced:
ci ¼
ci2
c11

ði ¼ 1; 2Þ; c3 ¼
c23
c11

; ei ¼
e1iffiffiffiffiffiffiffiffiffiffiffiffi
c11b11

p ði ¼ 1; 2Þ; ki ¼
k1i

arc11
ði ¼ 1; 2Þ

p1 ¼
p11

ar

ffiffiffiffiffiffiffiffiffiffiffiffi
c11b11

p ; ri ¼
rii

arT 0c11
ði ¼ r; hÞ; / ¼

ffiffiffiffiffiffiffi
b11

c11

s
w

barT 0

; Dr ¼
Drr

arT 0

ffiffiffiffiffiffiffiffiffiffiffiffi
c11b11

p ð2:4Þ

T 1ðn; sÞ ¼
T ðr; tÞ
T 0

; u ¼ ur
arT 0b

; n ¼ r
b
; s ¼ a

b
; CV ¼

ffiffiffiffiffiffi
c11
q

r
; s ¼ CV t

b

Then, Eqs. (2.1–2.3) can be rewritten as
rr ¼
ou
on

þ 2c1
u
n
þ e1

o/
on

� k1T 1ðn; sÞ ð2:5aÞ

rh ¼ c1
ou
on

þ ðc2 þ c3Þ
u
n
þ e2

o/
on

� k2T 1ðn; sÞ ð2:5bÞ

Dr ¼ e1
ou
on

þ 2e2
u
n
� o/

on
þ p1T 1ðn; sÞ ð2:5cÞ

orr

on
þ 2ðrr � rhÞ

n
¼ o

2uðn; sÞ
os2

ð2:6aÞ

oDrðn; sÞ
on

þ 2Dr

n
¼ 0 ð2:6bÞ
where, a and b are the inner and outer radii of the hollow sphere, respectively, and T0 is the reference tem-
perature, the boundary conditions and the initial conditions are
rrðs; sÞ ¼ NsðsÞ rrð1; sÞ ¼ N 1ðsÞ ð2:6c;dÞ

/ðs; sÞ ¼ /sðsÞ; /ð1; sÞ ¼ /1ðsÞ ð2:6e;fÞ

½uðn; sÞ�s¼0 ¼ 0;
ouðn; sÞ

os

� �
s¼0

¼ 0 ð2:6g;hÞ
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From Eq. (2.6b), we have
Drðn; sÞ ¼
1

n2
dðsÞ ð2:7Þ
where d(s) is an undetermined function to non-dimensional time s.
Substituting Eq. (2.7) into Eq. (2.5c), gives
o/
on

¼ e1
ou
on

þ 2e2
u
n
� 1

n2
dðsÞ þ p1T 1ðn; sÞ ð2:8Þ
Utilizing Eq. (2.8), Eqs. (2.5a) and (2.5b) may rewritten as
rr ¼ ð1þ e21Þ
ou
on

þ 2ðc1 þ e1e2Þ
u
n
� e1

n2
dðsÞ � ðk1 � e1p1ÞT 1ðn; sÞ ð2:9aÞ

rh ¼ ðc1 þ e1e2Þ
ou
on

þ ðc2 þ c3 þ 2e22Þ
u
n
� e2

n2
dðsÞ � ðk2 � e2p1ÞT 1ðn; sÞ ð2:9bÞ
Substituting Eqs. (2.9) into Eq. (2.6a), the basic displacement equation of thermo-electro-elastic motion
of a transversely isotropic piezoelectric hollow sphere is expressed as
o
2uðn; sÞ
on2

þ 2

n
ouðn; sÞ

on
� H 2uðn; sÞ

n2
¼ 1

C2
L

o
2uðn; sÞ
os2

þ I
dðsÞ
n3

þ gðn; sÞ ð2:10Þ
where
H 2 ¼ 2ðc2 þ c3 þ 2e22 � c1 � e1e2Þ
m

; C2
L ¼ m; I ¼ � 2e2

m
; m ¼ 1þ e21;

gðn; sÞ ¼ 1

m
ðk1 � e1p1Þ

oT
on

þ 2ðk1 � k2 þ ðe2 � e1Þp1Þ
T
n

� �
ð2:11Þ
where the detailed solution process for Eq. (2.10) is given in Appendix A.
2.2. Numerical results of the first example and discussions

Transient responses and distributions of a transversely isotropic piezoelectric hollow sphere subjected to
thermal shock, sudden mechanical load and electric excitation are, respectively, considered. A transitory
temperature change produced by a sudden electric current pulse is typically of a duration much less than
1 ls and may be expressed as
T 1ðn; sÞ ¼ HðsÞ ð2:12Þ
where H(s) denotes the Heaviside function.
In the numerical calculations, the internal radius of the transversely isotropic piezoelectric hollow sphere

is taken as a = 0.01 m, the material constants for the transversely isotropic piezoelectric hollow sphere are
selected as follows:
c11 ¼ c33 ¼ 111:0 GPa c22 ¼ 125:6 GPa; c12 ¼ 77:8 GPa; c13 ¼ c23 ¼ 74:3 GPa;

e11 ¼ 15:1 ðC=m2Þ; e12 ¼ e13 ¼ �5:2 ðC=m2Þ; ar ¼ 2:0� 10�5 ð1=kÞ;
ah ¼ 2:0� 10�6ð1=kÞ; p11 ¼ �2:5� 10�5 ðC=m2 kÞ; b11 ¼ 5:62� 10�9 ðC2=Nm2Þ;
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In the example, the ratio to wall thickness is s = 1/2. The dimensionless time is taken as s1 ¼ CLs
ð1�sÞCv

¼ CLt
b�a,

the dimensionless radial coordinate, R1 ¼ n�s
1�s ¼ r�a

b�a and the response time is taken as s1 = 10. Besides
the thermal shock load, T(n,s), in Eq. (2.12), a sudden mechanical load and electric excitation load are given
by
Fig. 1
R1 ¼ r

b

Fig. 2
R1 ¼ r

b

rrðs; sÞ ¼ HðsÞ rrð1; sÞ ¼ 0

/sðs; sÞ ¼ 0 /1ð1; sÞ ¼ HðsÞ
ð2:13Þ
From Figs. 1, 2 and 5, it is seen that the radial stresses and the electric potential at the boundaries R = 0,
1 satisfy the given boundary conditions. Because of the reflection wave effect between the internal and exter-
nal boundaries, except the points at given boundary condition, transient responses at other points oscillates
dramatically as shown in Figs. 1–5. It is seen from Figs. 1 and 2 that the radial stress at R1 = 0.1 near the
internal boundary appears in equal amplitude oscillatory around zero and the radial stress at R1 = 0.5
oscillates below zero. The maximum amplitude of radial compression stress is smaller than that of radial
tension stress. It is peculiar that because of thermo-electro-elastic interactions the hoop stress at the
. Response histories of the transient radial stresses in a transversely isotropic piezoelectric hollow sphere, where
�a
�a ; s1 ¼ CLt

b�a.

. Response histories of the transient radial stresses in a transversely isotropic piezoelectric hollow sphere, where
�a
�a ; s1 ¼ CLt

b�a.



Fig. 3. Response histories of the transient hoop stresses in a transversely isotropic piezoelectric hollow sphere, where
R1 ¼ r�a

b�a ; s1 ¼ CLt
b�a.

Fig. 4. Response histories of the transient electric displacements in a transversely isotropic piezoelectric hollow sphere, where
R1 ¼ r�a

b�a ; s ¼ CLt
b�a.

Fig. 5. Distributions of the transient electric potentials in a transversely isotropic piezoelectric hollow sphere, where R1 ¼ r�a
b�a ; s ¼ CLt

b�a.

H.L. Dai, X. Wang / International Journal of Solids and Structures 42 (2005) 1151–1171 1157



1158 H.L. Dai, X. Wang / International Journal of Solids and Structures 42 (2005) 1151–1171
external boundary of the transversely isotropic piezoelectric hollow sphere under sudden external pressure
appears tensional stress response which is different from response history of hoop stress in a transversely
isotropic hollow sphere under only mechanical load. Fig. 3 shows that the oscillatory amplitude of hoop
compression stress in the transversely isotropic piezoelectric hollow sphere is smaller than that of hoop ten-
sion stress. The response histories of electric displacement always are negative as shown in Fig. 4. It is seen
from Fig. 4 that the peak values of electric displacement decrease gradually from inner-wall to outer wall at
the identical time s1. The distribution of the electric potential in the transversely isotropic piezoelectric hol-
low sphere is shown in Fig. 5. It is seen in Fig. 5 that the electric potential at the external boundary equals 1,
which satisfy the prescribed electric boundary conditions (2.13), and the distribution of the electric potential
along radius is weak non-linear as time s1.
3. Thermo-electro-elastic transient response in a non-homogeneous orthotropic piezoelectric hollow cylinder

3.1. The constitutive relation and governing equation

A cylinder coordinate system (r,h,z) is used for an axisymmetric problem, so that we have uh = uu = 0,
ur = ur(r, t). The constitutive relation of a long non-homogeneous orthotropic piezoelectric hollow cylinder
subjected to a rapid change in temperature, T(r, t), and electric fields is expressed as
rrr ¼ c11
our
or

þ c12
ur
r
þ e11

owðr; tÞ
or

� k1T ðr; tÞ ð3:1aÞ

rhh ¼ c12
our
or

þ c22
ur
r
þ e12

owðr; tÞ
or

� k2T ðr; tÞ ð3:1bÞ

Drr ¼ e11
our
or

þ e12
ur
r
� b11

owðr; tÞ
or

þ p11T ðr; tÞ ð3:1cÞ

k1 ¼ c11a1 þ c12a2 þ c13a3; k2 ¼ c12a1 þ c22a2 þ c23a3; k3 ¼ c13a1 þ c23a2 þ c33a3 ð3:1dÞ

In the above formula, the non-homogeneity of material is characterized by a special law as follows:
cij ¼ R2NCij ði; j ¼ 1; 2; 3Þ; e1i ¼ R2NE1i ði ¼ 1; 2; 3Þ; ki ¼ R2NAi ði ¼ 1; 2; 3Þ;
b11 ¼ R2NB11; p11 ¼ R2NP 11; q ¼ R2Nq0; R ¼ r=b

ð3:2Þ
where Cij, E1i, Ai, B11, P11 and q0 are known constants of homogeneous material, and N can be an arbitrary
real number. rii(i = r,h) and Drr are the component of stress and radial electric displacement, respectively.
The equation of motion is expressed as
orrr

or
þ rrr � rhh

r
¼ q

o2urðr; tÞ
ot2

ð3:3Þ
In absence of free charge density, the charge equation of electro-statics is
oDrrðr; tÞ
or

þ Drr

r
¼ 0 ð3:4Þ
Substituting Eq. (3.2) into Eqs. (3.1), (3.3) and (3.4), gives
rr ¼ R2N ou
oR

þ C1

u
R
þ E1

o/
oR

� T 1ðR; sÞ
� �

ð3:5aÞ
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rh ¼ R2N C1

ou
oR

þ C2

u
R
þ E2

o/
oR

� T 2ðR; sÞ
� �

ð3:5bÞ

Dr ¼ R2N E1

ou
oR

þ E2

u
R
� o/

oR
þ T pðR; sÞ

� �
ð3:5cÞ

orr

oR
þ rr � rh

R
¼ R2N o2u

os2
ð3:5dÞ

oDrðR; sÞ
oR

þ Dr

R
¼ 0 ð3:5eÞ
where
C1 ¼
C12

C11

; C2 ¼
C22

C11

; C3 ¼
C13

C11

; C4 ¼
C23

C11

; Ei ¼
E1iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11B11

p ði ¼ 1; 2Þ;

ri ¼
rii

C11

ði ¼ r; hÞ; / ¼
ffiffiffiffiffiffiffi
B11

C11

r
wðr; tÞ

b
; Dr ¼

Drrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11B11

p ; T iðR; sÞ ¼
AiT ðr; tÞ

C11

ði ¼ 1; 2Þ ð3:6Þ

T pðR; sÞ ¼
P 11T ðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11B11

p ; u ¼ ur
b

S ¼ a
b
; CV ¼

ffiffiffiffiffiffiffi
C11

q0

s
; s ¼ CV t

b
;

The boundary conditions are expressed as
rrðS; sÞ ¼ 0 rrð1; sÞ ¼ 0 ð3:7a;bÞ

/ðS; sÞ ¼ /aðsÞ /ð1; sÞ ¼ /bðsÞ ð3:7c;dÞ
where /a(s) and /b(s) are the given electric potential imposed on the internal and external surfaces,
respectively.

The initial conditions are given by
uðR; 0Þ ¼ 0; _uðR; sÞ ¼ 0 at s ¼ 0; ð3:8a;bÞ
where a dot over a quantity denotes its partial derivative with respect to time.
Solving Eq. (3.5e), yields
DrðR; sÞ ¼
1

R
dðsÞ ð3:9Þ
where d(s) is an undetermined function with respect to the dimensionless time s.
Substituting Eq. (3.9) into Eq. (3.5), yields
o/
oR

¼ E1
ou
oR

þ E2
u
R
� 1

R2Nþ1
dðsÞ þ T pðR; sÞ ð3:10aÞ

rr ¼ R2N ð1þ E2
1Þ
ou
oR

þ ðC1 þ E1E2Þ
u
R
� T 1pðR; sÞ

� �
� E1

R
dðsÞ ð3:10bÞ

rh ¼ R2N ðC1 þ E1E2Þ
ou
oR

þ ðC2 þ E2
2Þ
u
R
� T 2pðR; sÞ

� �
� E2

R
dðsÞ ð3:10cÞ
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where
T 1pðR; sÞ ¼ T 1ðR; sÞ � E1T pðR; sÞ; T 2pðR; sÞ ¼ T 2ðR; sÞ � E2T pðR; sÞ
T 3pðR; sÞ ¼ T 3ðR; sÞ � E3T pðR; sÞ

ð3:10dÞ
Substituting Eqs. (3.10b) and (3.10c) into Eq. (3.5d), the basic displacement equation of thermo-electro-
elastic motion of a non-homogeneous orthotropic piezoelectric hollow cylinder subjected to thermal shock
is expressed as
o2uðR; sÞ
oR2

þ ð2N þ 1Þ 1
R
ouðR; sÞ

oR
� H 2

1uðR; sÞ
R2

¼ 1

C2
L

o2uðR; sÞ
os2

þ I
dðsÞ

R2ðNþ1Þ þ G1ðR; sÞ ð3:11Þ
where
H 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ E2

2

� �
� 2NðC1 þ E1E2Þ
1þ E2

1

s
; CL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

1

q
; I ¼ � E2

1þ E2
1

;

G1ðR; sÞ ¼
1

1þ E2
1

oT 1p

oR
þ 1

R
ðT 1p�2pÞ

� � ð3:12Þ
where the detailed solution process for Eq. (3.11) is given in Appendix B.

3.2. Numerical results of the second example and discussions

Transient responses and distributions of stresses, electric displacement and electric potential in a non-
homogeneous orthotropic piezoelectric hollow cylinder subjected to thermal shock and a suddenly electric
potential on the external surface are, respectively, considered. A transitory temperature change produced
by a sudden electric current pulse is a typically of duration much less than 1 ls, and can be expressed as
T ðr; tÞ ¼ HðtÞ ð3:13Þ
where H(t) denotes the Heaviside function.
In the numerical calculations, the basic material constants are taken as: C11 = C33 = 111.0

[GPa], C22 = 220.0 [GPa],C12 = 77.8 [GPa], C13 = C23 = 115.0 [GPa], E12 = 15.1 [C/m2], E12 = 15.1

[C/m2], E11 = E13 = �5.2 [C/m2], a1 = a3 = 0.0001 [1/K], a2 = 0.00001 [1/K], b11 = 5.62 · 10�9

[C2/Nm2], P11 = �2.5 · 10�5 [N/m2K] and q0 = 4350 [kg/m3]. In results, the internal radii of the non-
homogeneous piezoelectric hollow cylinder are taken as a = 0.01 m, and the wall thickness ratio is taken
as S = 1/2. The dimensionless time is taken as s1 ¼ CLs

ð1�SÞCv
¼ CLt

b�a, the dimensionless radial coordinate,

R1 ¼ R�S
1�S ¼ r�a

b�a and the response time is taken as s1 6 20.
The non-homogeneous piezoelectric hollow cylinder is subjected to thermal shock load, T(r, t), in Eq.

(3.13), and an electric excitation which is expressed as
/ðs; sÞ ¼ 0; /bð1; sÞ ¼ HðsÞ ð3:14Þ

Fig. 6 shows the response histories of the radial stress at the middle point (R1 = 0.5) of the piezoelectric

hollow cylinder for different N. From the curves, it is seen that the maximum amplitudes of radial stresses in
the piezoelectric hollow cylinder subjected to thermal shock and an electric excitation vary as different
material exponent N. Figs. 7 and 8 show the responses of the hoop stresses at the internal and external sur-
faces, respectively. From the curves, it is seen that the peak values of the hoop stresses decreases as the ra-
dial point R1 increases. Figs. 9 and 10 show the radial electric displacements at the internal boundary
(R1 = 0.0) and the external boundary (R1 = 1.0) of the hollow cylinder for different values of N. It is seen
that the response histories of the electric displacement in the piezoelectric hollow cylinder always appear in



Fig. 6. Transient response histories of the radial stresses in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where R1 = 0.5.

Fig. 7. Transient response histories of the hoop stresses in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where R1 = 0.

Fig. 8. Transient response histories of the hoop stresses in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where R1 = 1.
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Fig. 9. Transient response histories of the electric displacements in a non-homogeneous orthotropic piezoelectric hollow cylinder for
different N, where R1 = 0.

Fig. 10. Transient response histories of the electric displacements in a non-homogeneous orthotropic piezoelectric hollow cylinder for
different N, where R1 = 1.0.

Fig. 11. Distributions of the transient electric potentials in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where s1 = 10.
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negative. Fig. 11 illustrates the distributions of electric potential at the response time, s1 = 10, for different
material exponent N. The calculated electric potentials equal zero both at the internal and external surfaces,
which satisfies with the prescribed electric boundary conditions.
4. Conclusions

1. In example 1, it is seen that the response histories and distributions of stresses, electric displacement
and electric potential in a transversely isotropic piezoelectric hollow sphere are interaction each other.
Thus, it is possible to control the response histories and distribution of thermal stresses in the transversely
isotropic piezoelectric hollow sphere by applying a suitable mechanical load or electric excitation load to
the structure, or to assessment the response histories and distribution of thermal stresses in the transversely
isotropic piezoelectric hollow sphere by measuring the response histories of electric potential in the
structure.

2. In example 2, the non-homogeneity of material is characterized by N value based on the basic material
constants. For N = 0 the material property of the orthotropic piezoelectric hollow cylinder is homogeneity.
For N5 0 the material property of the orthotropic piezoelectric hollow cylinder is non-homogeneity. The
thermo-electro-elastic responses in the orthotropic piezoelectric hollow cylinder are mainly dependent on
non-homogeneity properties of material. Therefore, one can design the non-homogeneity property, N, of
piezoelectric structures to decrease the amplitude of stresses and to increase the response amplitude of elec-
tric signal in the piezoelectric structures in order to satisfy the requirement of engineering applications.

3. Because of the interaction between elastic deformation and electric field, a sudden mechanical load
induces the response of electric displacement and electric potential in a piezoelectric structure. Likewise,
a sudden electric potential also causes the dynamic stresses responses. Thus, applying a suitable electric
excitation to a piezoelectric structure can control the responses and distributions of dynamic stresses in
the piezoelectric structure.

4. Though it may be convenient and straightforward that to employ a numerical solution (Finite element
method) solves some problems, it is more effective that to employ an analytical method exactly describe the
interaction effect of thermo-electro-elastic waves and the effect of the non-homogeneity properties on ther-
mo-electro-elastic transient response in piezoelectric structures subjected to arbitrary thermal shock, sud-
den mechanical load and electric excitation.

5. It is concluded from the above analyses and results that the present method is simple and validated. So
it can be used as a reference to solve other transient problems of the coupled thermo-electro-elasticity.
From the knowledge of the response histories of transient stresses, electric displacement and electric poten-
tial in piezoelectric structures, various thermo-electro-elastic elements under thermal shock load, sudden
mechanical load and transient electric excitation can be designed to meet specific engineering requirements.
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Appendix A

The general solution to the governing equation (2.10) of thermo-electro-elastic motion in a transversely
isotropic piezoelectric hollow sphere can be decomposed into
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uðn; sÞ ¼ uqðn; sÞ þ udðn; sÞ ðA:1Þ

where uq(n,s) and ud(n,s) are, respectively, a quasi-static solution which satisfies inhomogeneous boundary
conditions and a dynamic solution which satisfies homogeneous boundary conditions, to Eq. (2.10).

The quasi-static solution uq(n,s) must satisfy the following equation (A.2a) and the corresponding
inhomogeneous boundary conditions (A.2b).
o
2uqðn; sÞ
on2

þ 2

n
ouqðn; sÞ

on
� H 2

n2
uqðn; sÞ ¼ I

dðsÞ
n3

þ gðn; sÞ ðA:2aÞ

ouqðn; sÞ
on

þ h
uqðn; sÞ

on

� �
n¼j

¼ hjðsÞ ðj ¼ s; 1Þ ðA:2bÞ
Solving Eqs. (A.2) (Lekhnitskii, 1981), we have
uqðn; sÞ ¼ A1ðn; sÞ þ A2ðnÞNsðsÞ þ A3ðnÞN 1ðsÞ þ A4ðnÞdðsÞ ðA:3Þ

where
A1ðn; sÞ ¼ g1ðn; sÞ þ L1L3n
n�0:5 þ L2L4n

�ðnþ0:5Þ

A2ðnÞ ¼
L1

1þ e21
nn�0:5 þ L2

1þ e21
n�ðnþ0:5Þ

A3ðnÞ ¼
L1

1þ e21
s�n�1:5nn�0:5 þ L2

1þ e21
sn�1:5n�ðnþ0:5Þ

A4ðnÞ ¼ L1L5

1

s2
� s�ðnþ1:5Þ

� �
nn�0:5 þ L2L5

1

s2
� sðn�0:5Þ

� �
n�ðnþ0:5Þ � I

H 2n

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ H 2

p
; g1ðn; sÞ ¼ n�n�0:5

Z n

s
n2n�1

Z n

s
n�nþ1:5gðn; sÞdn

� �
dn

g2ðn; sÞ ¼ g01ðn; sÞ þ
h
n
gðn; sÞ; L1 ¼

1

ðnþ h� 0:5Þ½sn�0:5 � s�ðnþ1:5Þ�

L2 ¼
1

ðn� hþ 0:5Þ½sn�0:5 � s�ðnþ1:5Þ� ; L5 ¼
e1

1þ e21
þ ðh� 1ÞI

H 2

L3 ¼
1

m
½T 1pðs; sÞ � T 1pð1; sÞs�ðnþ1:5Þ� � ½g2ðs; sÞ � g2ð1; sÞs�ðnþ1:5Þ�

L4 ¼
1

m
½T 1pðs; sÞ � T 1pð1; sÞsn�0���5� � ½g2ðs; sÞ � g2ð1; sÞsn�0���5�

ðA:4Þ
Substituting Eq. (A.1) into Eq. (2.10) and Eqs. (2.6g,h) and utilizing Eq. (A.2) provides an inhomoge-
neous dynamic equation with homogeneous boundary conditions, and the corresponding initial conditions
for ud(n,s)
o
2udðn; sÞ
on2

þ 2

n
oudðn; sÞ

on
� H 2

n2
udðn; sÞ ¼

1

C2
L

o
2udðn; sÞ
os2

þ o
2uqðn; sÞ
os2

� �
ðA:5aÞ

oudðn; sÞ
on

þ h
udðn; sÞ

n

� �
n¼j

¼ 0 ðj ¼ s; 1Þ ðA:5b;cÞ

udðn; 0Þ þ uqðn; 0Þ ¼ 0;
oudðn; 0Þ

os
þ ouqðn; 0Þ

os
¼ 0 ðA:5dÞ
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In order to transform Eq. (A.5a) into a normal Bessel equation, a new dependent variable f(n,s) is intro-
duced as
udðn; sÞ ¼ n�0:5f ðn; sÞ ðA:6Þ

Then Eq. (A.5) is rewritten as
o2f ðn; sÞ
on2

þ 1

n
of ðn; sÞ

on
� R2

n2
f ðn; sÞ ¼ 1

C2
L

o2f ðn; sÞ
os2

þ o2uq1ðn; sÞ
os2

� �
ðA:7aÞ

of ðs; sÞ
on

þ hsf ðs; sÞ ¼ 0;
of ð1; sÞ

on
þ h1f ð1; sÞ ¼ 0 ðA:7b;cÞ

f ðn; 0Þ ¼ 0;
of ðn; 0Þ

os
¼ 0 ðA:7d;eÞ
where
uq1ðn; sÞ ¼ B1ðn; sÞ þ B2ðnÞNsðsÞ þ B3ðnÞN 1ðsÞ þ B4ðnÞdðsÞ; hi ¼
ðh� 0:5Þ

i
ði ¼ s; 1Þ

R2 ¼ 0:25þ H 2; B1ðn; sÞ ¼ n0:5A1ðn; sÞ; BiðnÞ ¼ n0:5AiðnÞ; ði ¼ 2; 3; 4Þ ðA:8Þ

Define a finite Hankle transform f(r, t) such that (Cinelli, 1965)
�f ðki; sÞ ¼ H ½f ðn; sÞ� ¼
Z 1

s
nf ðn; sÞGRðkinÞdn ðA:9Þ
Then the inverse Hankle transform is given by
f ðn; sÞ ¼
X
ki

�f ðki; sÞ
F ðkiÞ

GRðkinÞ ðA:10Þ
where
F ðkiÞ ¼
Z 1

s
n½GRðkinÞ�2 dn; GRðkinÞ ¼ JRðkinÞY s � J sY RðkinÞ ðA:11Þ
In the above formula ki (i = 1,2, . . . ,n) are a series of positive roots of the natural eigenequation as follows:
J sY 1 � J 1Y s ¼ 0 ðA:12Þ

and
Js ¼ kiJ 0
RðkisÞ þ hsJRðkisÞ; J 1 ¼ kiJ 0

RðkiÞ þ h1JRðkiÞ
Y s ¼ kiY 0

RðkisÞ þ hsY RðkisÞ; Y 1 ¼ kiY 0
RðkiÞ þ h1Y RðkiÞ

ðA:13Þ
where JR(kin) and YR(kin) are the first and the second kind of the Rth-order Bessel function, respectively.
xi = CL ki expresses the natural frequencies.

Applying the finite Hankel transform (A.9) to Eq. (A.7a) and utilizing the corresponding boundary con-
dition (A.7b,c), we have
�k2
i
�f ðki; sÞ ¼

1

C2
L

o
2�f ðki; sÞ
os2

þ o
2�uq1ðki; sÞ

os2

� �
ðA:14aÞ
where
�uq1ðki; sÞ ¼ H ½uq1ðn; sÞ� ðA:14bÞ



1166 H.L. Dai, X. Wang / International Journal of Solids and Structures 42 (2005) 1151–1171
Applying the Laplace transform to the two sides of Eq. (A.14a) and utilizing the zero initial conditions
(A.7d,e), yields
�k2
i C

2
L
�f
�ðki; pÞ ¼ p2�f

�ðki; pÞ þ p2�u�q1ðki; pÞ ðA:15Þ
where p is the parameter of the Laplace transform.
The inverse Laplace transform for Eq. (A.15) gives
�f ðki; sÞ ¼ ��uq1ðki; sÞ þ xi½�uq1ðki; sÞ sinðxisÞ� ðA:16Þ

where
�uq1ðki; sÞ sinðxisÞ ¼
Z s

0

½B1ðki; tÞ þ B2ðkiÞNsðtÞ þ B3ðkiÞN 1ðtÞ þ B4ðkiÞdðtÞ� sin½xiðs � tÞ�dt
and
B1ðki; sÞ ¼ H ½B1ðn; sÞ�; BjðkiÞ ¼ H ½BjðnÞ� ðj ¼ 2; 3; 4Þ ðA:17Þ

Substituting Eq. (A.17) into Eq. (A.16), yields
�f ðki; sÞ ¼ I1iðki; sÞ þ
X4

j¼2

BjðkiÞI jiðki; sÞ ðA:18Þ
where
I1iðki; sÞ ¼ �B1ðki; sÞ þ xi

Z s

0

B1ðki; tÞ sin½xiðs � tÞ�dt

I2iðki; sÞ ¼ �NsðsÞ þ xi

Z s

0

NsðtÞ sin½xiðs � tÞ�dt

I3iðki; sÞ ¼ �N 1ðsÞ þ xi

Z t

0

N 1ðtÞ sin½xiðs � tÞ�dt

I4iðki; sÞ ¼ �dðsÞ þ xi

Z s

0

dðtÞ sin½xiðs � tÞ�dt

ðA:19Þ
Substituting Eq. (A.18) into Eq. (A.10), the dynamic solution for inhomogeneous dynamic equation
(A.7a) with homogeneous boundary conditions can be obtained as follows:
f ðn; sÞ ¼
X
ki

GRðkinÞ
F ðkiÞ

I1iðki; sÞ þ
X4

j¼2

BjðkiÞIjiðki; sÞ
" #

ðA:20Þ
From Eqs. (A.20), (A.6), (A.3) and (A.1), the solution of the basic displacement equation (2.10) of ther-
mo-electro-elastic motion in the piezoelectric hollow sphere is expressed as
uðn; sÞ ¼ A1ðn; sÞ þ A2ðnÞNsðsÞ þ A3ðnÞN 1ðsÞ þ A4ðnÞdðsÞ

þ
X
ki

n�0:5GRðkinÞ
F ðkiÞ

I1iðki; sÞ þ
X4

j¼2

BjðkiÞIjiðki; sÞ
" #

ðA:21Þ
Noting that in the above expression d(s) still is an unknown function which is related to the electric dis-
placement. Thus, it is necessary to determine d(s) in the following.

Integrating Eq. (2.5c) and utilizing the corresponding electric boundary condition (2.6e), yields
/ðn; sÞ ¼ U1ðn; sÞ þ U2ðnÞNsðsÞ þ U3ðnÞN 1ðsÞ þ U4ðnÞdðsÞ þ
X
i

U5iðnÞF iðsÞ þ /sðsÞ ðA:22Þ
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where
U1ðn; sÞ ¼ e1 A1ðn; sÞ � A1ðs; sÞ �
X
ki

ðn�0:5GRðkinÞ � s�0:5GRðkisÞÞ
F ðkiÞ

B1ðki; sÞ
" #

þ 2e2

Z n

s

1

n
A1ðn; sÞ �

X
ki

n�0:5GRðkinÞ
F ðkiÞ

B1ðki; sÞ
" #

dn þ p1

Z n

s
T ðn; sÞdn ðA:23aÞ

U2ðnÞ ¼ e1 A2ðnÞ � A2ðsÞ �
X
ki

ðn�0:5GRðkinÞ � s�0:5GRðkisÞÞ
F ðkiÞ

B2ðkiÞ
" #

þ 2e2

Z n

s

1

n
A2ðnÞ �

X
ki

n�0:5GRðkinÞ
F ðkiÞ

B2ðkiÞ
" #

dn ðA:23bÞ

U3ðnÞ ¼ e1 A3ðnÞ � A3ðsÞ �
X
ki

ðn�0:5GRðkinÞ � s�0:5GRðkisÞÞ
F ðkiÞ

B3ðkiÞ
" #

þ 2e2

Z n

s

1

n
A3ðnÞ �

X
ki

n�0:5GRðkinÞ
F ðkiÞ

B3ðkiÞ
" #

dn ðA:23cÞ

U4ðnÞ ¼ e1 A4ðnÞ � A4ðsÞ �
X
ki

ðn�0:5GRðkinÞ � s�0:5GRðkisÞÞ
F ðkiÞ

B4ðkiÞ
" #

þ 2e2

Z n

s

1

n
A4ðnÞ �

X
ki

n�0:5GRðkinÞ
F ðkiÞ

B4ðkiÞ
" #

dn þ 1

n
ðA:23dÞ

U5iðnÞ ¼ e1
ðn�0:5GRðkinÞ � s�0:5GRðkisÞÞ

F ðkiÞ
þ 2e2

Z n

s

1

n1:5

GRðkinÞ
F ðkiÞ

dn ðA:23eÞ

F iðsÞ ¼ F 1iðsÞ þ B4ðkiÞxi

Z s

0

dðtÞ sin½xiðs � tÞ�dt ðA:23fÞ

F 1iðsÞ ¼ xi

Z s

0

B1ðki; tÞ sin½xiðs � tÞ�dt þ B2ðkiÞxi

Z s

0

NsðtÞ sin½xiðs � tÞ�dt

þ B3ðkiÞxi

Z s

0

N 1ðtÞ sin½xiðs � tÞ�dt ðA:23gÞ
When n = 1 at the outer boundary of the transversely isotropic piezoelectric hollow sphere, Eq. (A.22) is
rewritten as
/1ðsÞ ¼ U1ð1; sÞ þ U2ð1ÞNsðsÞ þ U3ð1ÞN 1ðsÞ þ U4ð1ÞdðsÞ þ
X
i

U5ið1ÞF iðsÞ þ /sðsÞ ðA:24Þ
Substituting s = 0 into Eq. (A.24), leads to
dð0Þ ¼
/1ð0Þ � /sð0Þ � U1ð1; 0Þ � U2ð1ÞNsð0Þ � U3ð1ÞN 1ð0Þ �

P
i

U5ið1ÞF ið0Þ

U4ð1Þ
ðA:25Þ
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Substituting Eq. (A.23f) into Eq. (A.24), yields
#ðsÞ ¼ M1dðsÞ þ
X
i

M2i

Z s

0

dðtÞ sin½xiðs � tÞ�dt ðA:26Þ
where
#ðsÞ ¼ /1ðsÞ � /sðsÞ � U1ð1; sÞ � U2ð1ÞNsðsÞ � U3ð1ÞN 1ðsÞ �
X
i

U5ið1ÞF 1iðsÞ

M1 ¼ U4ð1Þ; M2i ¼ U5ið1ÞB4ðkiÞxi

ðA:27Þ
It is seen that Eq. (A.26) is the Volterra integral equation (Kress, 1989) of the second kind. In the
following, we will solve Eq. (A.26) by using the recursion formula based on linear interpolation function.
In order to show the method of solving the integral equation (A.26), the time interval [0,s] is divided into n
subintervals, that is, the discrete time points are s0 = 0,s1,s2 ,. . . ,sn. Then the interpolation function at the
time interval [sj�1,sj] is expressed as
dðsÞ ¼ g0
j ðsÞdðsj�1Þ þ g1

j ðsÞdðsjÞ ðj ¼ 1; 2; . . . ; nÞ ðA:28aÞ
where
g0
j ðsÞ ¼

s � sj
sj�1 � sj

; g1
j ðsÞ ¼

s � sj�1

sj � sj�1

ðj ¼ 1; 2; . . . ; nÞ ðA:28bÞ
Substituting Eq. (A.28) into Eq. (A.26), gives
#ðsjÞ ¼ M1dðsjÞ þ
X
i

M2i

Xj

k¼1

½Rijkdðsk�1Þ þ SijkdðskÞ� ðA:29Þ
where
Rijk ¼
Z sk

sk�1

g0
kðtÞ sin½xiðs � tÞ�dt ðA:30aÞ

Sijk ¼
Z sk

sk�1

g1
kðtÞ sin½xiðs � tÞ�dt ðk ¼ 1; 2; . . . ; j; j ¼ 1; 2; . . . ; nÞ ðA:30bÞ
From Eq. (A.29), we have
dðsjÞ ¼
#ðsjÞ �

P
i
M2i

Pj�1

k¼1

½Rijkdðsk�1Þ þ SijkdðskÞ� � dðsj�1Þ
P
i
M2iRijj

M1 þ
P
i
M2iSijj

ðj ¼ 1; 2; . . . ; nÞ ðA:31Þ
Substituting d(0) in Eq. (A.25) into Eq. (A.26), we can obtain d(sj) (j = 1,2, . . . ,n) step by step, and deter-
mine d(s). Substituting d(s) obtained from Eq. (A.31) into Eq. (A.21), gives the exact expression of the solu-
tion, u(n,s), for the basic equation of thermo-electro-elastic equation (2.10) in the transversely isotropic
piezoelectric hollow sphere. Thus, the corresponding transient stresses rr(n,s), rh(n,s), the transient electric
displacement Dr(n,s) and the transient electric potential /(n,s) are easily obtained from Eqs. (2.5a–c),
(A.22), and (A.21).
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Appendix B

A new dependent variable W(R,s) is introduced as
uðR; sÞ ¼ R�NW ðR; sÞ ðB:1Þ

Utilizing the Eqs. (B.1), Eqs. (3.11), (3.7) and (3.8) are rewritten as
o2W

oR2
þ 1

R
oW
oR

� H 2W

R2
¼ 1

C2
L

o2W
os2

þ I
dðsÞ
RNþ2

þ G2ðR; sÞ ðB:2aÞ

R ¼ S :
oW ðR; sÞ

oR
þ h

W ðR; sÞ
R

¼ h1ðsÞ ðB:2bÞ

R ¼ 1 :
oW ðR; sÞ

oR
þ h

W ðR; sÞ
R

¼ h2ðsÞ ðB:2cÞ

W ðR; 0Þ ¼ 0 _W ðR; 0Þ ¼ 0 ðB:2d;eÞ
where
H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 þ H 2

1

q
; h ¼ C1 þ E1E2

1þ E2
1

� N ; G2ðR; sÞ ¼ RNG1ðR; sÞ

h1ðsÞ ¼
SN

1þ E2
1

E1

dðsÞ
Sð2Nþ1Þ þ T 1pðS; sÞ

� �
; h2ðsÞ ¼

1

1þ E2
1

½E1dðsÞ þ T 1pð1; sÞ�

�u1ðRÞ ¼ RNu0ðRÞ; v1ðRÞ ¼ RNv0ðRÞ: ðB:3a–gÞ

The general solution to the governing equation (B.2) can be decomposed into
W ðR; sÞ ¼ W qðR; sÞ þ W dðR; sÞ ðB:4Þ

Here, the quasi-static solution Wq(R,s) must satisfy the following equations:
o
2W qðR; sÞ
oR2

þ 1

R
oW qðR; sÞ

oR
� H 2W qðR; sÞ

R2
¼ I

dðsÞ
RNþ2

þ G2ðR; sÞ ðB:5aÞ

R ¼ S :
oW qðR; sÞ

oR
þ h

W qðR; sÞ
R

¼ h1ðsÞ ðB:5bÞ

R ¼ 1 :
oW qðR; sÞ

oR
þ h

W qðR; sÞ
R

¼ h2ðsÞ ðB:5cÞ
The general integral of Eqs. (B.5a) is of the form
W qðR; sÞ ¼ w1ðR; sÞ þ w2ðRÞdðsÞ ðB:6Þ

In the above formula, we have
w1ðR; sÞ ¼ R�H

Z R

S
R2H�1

Z R

S
R�HþNþ1G2ðR; sÞdRdRþ R2H � S2H

2H 2
� S2H

h� H

� �
R�Hq3ðsÞ

þ SNþHþ1T 1pðS; sÞ
ðh� HÞC2

L

R�H ðB:7aÞ
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w2ðRÞ ¼ IR�H

Z R

S
R2H�1

Z R

S
R�ðHþNþ1Þ dRdRþ g3

R2H � S2H

2H 2
� S2H

h� H

� �
R�H þ E1S

H�N

ðh� HÞC2
L

R�H ðB:7bÞ

g3 ¼ g2 ðH � hÞg1 þ
Ið1� S�ðHþNÞÞ

H þ N
þ E1

C2
L

ð1� SHÞ
" #

;

g2 ¼
2H

ð1� S2H ÞðH þ hÞ
; g1 ¼ � I

N þ H
1� SN�H

N � H
þ 1� S2H

2H

� �
;

q3ðsÞ ¼ g4 ðH � hÞq1ðsÞ � q2ðsÞ þ
1

C2
L

½T 1pð1; sÞ � SHþ1T 1pðS; sÞ�
( )

;

q1ðsÞ ¼
Z 1

S
R2H�1

Z R

S
R�HþNþ1G2ðR; sÞdRdR; q2ðsÞ ¼

Z 1

S
R�HþNþ1G2ðR; sÞdR ðB:8c–hÞ
Substituting (B.4) into (B.2) and utilizing (B.5) provides an inhomogeneous dynamic equation with
homogeneous boundary conditions for Wd(R,s)
o2W dðR; sÞ
oR2

þ 1

R
oW dðR; sÞ

oR
� H 2

R2
W dðR; sÞ ¼

1

C2
L

o2W dðR; sÞ
os2

þ o2W qðR; sÞ
os2

� �
ðB:9aÞ

oW dðR; sÞ
oR

þ h
W dðR; sÞ

R

� �
R¼S

¼ 0;
oW dðR; sÞ

oR
þ h

W dðR; sÞ
R

� �
R¼1

¼ 0 ðB:9bÞ

W dðR; 0Þ þ W qðR; 0Þ ¼ u1ðRÞ
oW dðR; 0Þ

os
þ oW qðR; 0Þ

os
¼ v1ðRÞ ðB:9c;dÞ
In the above equation, Wq(R,s) is the known solution as shown in Eq. (B.6).
Utilizing the solving processes of Eqs. (A.9)–(A.31) as shown in Appendix A, the solution,Wd(R,s), for

Eq. (B.9) can be easily obtained. Thus, the exact expression of the solution u(R,s) is given for the governing
equation of thermo-electro-elastic motion in a non-homogeneous orthotropic piezoelectric hollow cylinder.
The corresponding transient stresses rr(R,s)rh (R,s), the transient electric displacement Dr(R,s) and the
transient electric potential /(R,s) are easily obtained.
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