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Abstract

The paper presents an analytical method to solve thermo-electro-elastic transient response in piezoelectric hollow
structures subjected to arbitrary thermal shock, sudden mechanical load and electric excitation. Volterra integral equa-
tion of the second kind caused by interaction between elastic deformation and electric field is solved by using an inter-
polation method. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement
and electric potential in the piezoelectric hollow structures are obtained by means of Hankel transform, Laplace trans-
form, and their inverse transforms. In Section 2, based on spherical coordinates, the governing equation of thermo-elec-
tro-elastic transient responses in a piezoelectric hollow sphere is found and the associated numerical results are carried
out. In Section 3, based on cylindrical coordinates, the governing equation of thermo-electro-elastic transient responses
in a non-homogeneous piezoelectric hollow cylinder is found and the corresponding numerical results are carried out.
The results carried out may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity
in piezoelectric structures.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, there is an accelerated effort and notable contributions on the study of thermo-electro-
elastic coupling behavior in some engineering areas, including aerospace, offshore and submarine
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Nomenclature
&j component of strains
u, radial displacement [m]

ci» €, 0, py elastic constants [N/m?], piezoelectric constants [C/m?], thermal expansion coefficients
[1/k] and dielectric constants [C*/Nm?]

i, B thermal modulus [N/m?K], and pyroelectric coefficient [C/m*K]

o, Dy, the component of stresses [N/m?] and radial electric displacement [C/m?]

Y(r,t) electric potential [W/A]

T(r,t) temperature change function [k]

o, t mass density [kg/m*] and time variable [s]

r radial variable [m]

a, b inner and outer radii of piezoelectric hollow sphere or cylinder [m]
Cr electro-elastic wave speed [m/s]

w inherent frequency of piezoelectric hollow structures [1/s]

structures, chemical vessel and civil engineering structures. These structures can be simplified to a trans-
versely isotropic hollow sphere or an orthotropic hollow cylinder, and can be easily exposed to a variety
of temperature fields in different environments. The understanding of mechanical behaviors of piezoelectric
structures is thus of significant importance.

In previous investigations of piezoelectric structures, there are some investigations on hollow sphere. For
piezoelectric materials, in Sinha (1962), the static solution of radial deformation of a piezoelectric spherical
shell under uniform pressures on the internal and external surfaces, and subjected to a given voltage differ-
ence between these surface, coupled with a radial distribution of temperature was successfully solved. Dy-
namic thermal shock in a hollow sphere and spherical elastic shell of arbitrary thickness was investigated by
Zaker (1966, 1968). Parida and Das (1972) studied the transient thermal stresses in a homogeneous ortho-
tropic thin circular disc due to an instantaneous point heat source. Sugano (1979) solved the transient ther-
mal stresses in a homogeneous transversely isotropic, finite cylinder due to an arbitrary internal heat
generation. Due to a constant temperature imposed on one surface and heat convection into a medium
at the other surface, Kardomateas (1989, 1990) obtained the transient thermal stresses in a homogeneous
hollow cylinder. Shul’ga (1990) studied the radial electro-elastic vibrations of a hollow piezoceramic sphere.
Thermal shock in a hollow sphere caused by rapid uniform heating was analyzed by Hata (1991). Wang
(1995, 1996) studied the dynamic thermal stresses in homogeneous isotropic solid cylinders and hollow cyl-
inder subjected to thermal shock. Abd-Alla (1995) solved the thermal stresses in a homogeneous, trans-
versely isotropic, infinite cylindrical shell subjected to an instantaneous heat source. Wang et al. (2001)
obtained dynamic thermal stress in a transversely isotropic hollow sphere. Chen and Shioya (2001) inves-
tigated the piezothermoelastic behavior of a pyroelectric spherical shell. Ding et al. (2003) investigated dy-
namic response of a pyroelectric hollow sphere under radial deformation.

The other hand, many studies on transient responses of non-homogeneous structures have been also
done. Shaffer (1967) obtained the general solutions for a non-homogeneous orthotropic annular disk in
plane stress subjected to uniform pressures at the internal and external surface. The torsional oscillations
of a finite non-homogeneous piezoelectric cylindrical shell were investigated by Sarma (1980). Abd-Alla
et al. (1999) studied the transient thermal stresses in a rotating non-homogeneous cylindrically orthotropic
composite tube and in a non-homogeneous spherically orthotropic elastic medium with spherical cavity,
respectively. Horgan and Chan (1999) investigated the pressured FGM hollow cylinder and disk problems.
Tarn (2001) obtained an exact solution of functionally graded anisotropic cylinders subjected to thermal
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and mechanical loads for a steady-state problem. The electro-elastic problems for a special non-homogene-
ous piezoelectric hollow cylinder had been studied by Hou et al. (2003). The non-homogeneous material has
gained much attention because of its good heat-shielding character as well as other significant superiorities.
To date, investigations on the interactions of thermo-electro-mechanical coupled behavior in homogeneous
piezoelectric structure have mainly considered static interactions between thermal, electric and mechanical
fields and transient interaction between electric field and mechanical field in a non-homogeneous structure.

However, investigations on thermo-electro-elastic transient response of a transversely isotropic piezoe-
lectric hollow sphere and thermo-electro-elastic transient response in a non-homogeneous orthotropic pie-
zoelectric hollow cylinder, subjected to arbitrary thermal shock, sudden mechanical load and electric
excitation have been few.

This paper presents an exact solution for thermo-electro-elastic transient response in piezoelectric hollow
structures subjected to arbitrary thermal shock, radial shock load and electric excitation. The thermo-elec-
tro-elasto-dynamic equation for piezoelectric hollow structures is decomposed into a quasi-static homoge-
neous equation with inhomogeneous boundary conditions and an inhomogeneous dynamic equation with
homogeneous boundary conditions. Using the method described by Lekhnitskii (1981), the quasi-static
question can be exactly solved. The solution to the inhomogeneous dynamic question which satisfies homo-
geneous boundary conditions is obtained by utilizing the corresponding finite Hankel transforms (Cinelli,
1965), and the Laplace transforms. Then, using an interpolation method, Volterra integral equation (Kress,
1989) of the second kind caused by interaction between thermo-elastic field and thermo-electric field is
solved. Thus, the exact expressions for the transient responses of displacement, stresses, electric displace-
ment and electric potential in piezoelectric hollow structures are obtained.

In Section 2, based on spherical coordinates, the governing equation of thermo-electro-elastic transient
responses in a transversely isotropic piezoelectric hollow sphere is found and the associated numerical re-
sults are carried out. In Section 3, based on cylindrical coordinates, the governing equation of thermo-elec-
tro-elastic transient responses in a non-homogeneous piezoelectric hollow cylinder is found and the
corresponding numerical results are carried out. The results carried out may be used as a reference to solve
other transient coupled problems of thermo-electro-elasticity in piezoelectric hollow structures.

2. Thermo-electro-elastic transient responses in a transversely isotropic piezoelectric hollow sphere
2.1. The constitutive relation and governing equation

A spherical coordinate system (r, 0, ¢) with the origin identical to the center of a hollow sphere is used.
For the spherically symmetric problem, we have uy = u, =0, u, = u,(r,t). For a transversely isotropic pie-
zoelectric hollow sphere subjected to a rapid change in temperature 7{(r,¢), the thermo-electro-elastic tran-
sient responses of the hollow sphere is a spherically symmetric problem, so that he constitutive relations of
a spherically transversely isotropic pyroelectric medium are expressed as (Sinha, 1962; Chen and Shioya,
2001)

Ou, u, 0

Trr = €11 +20127+€116—‘f—)»117"(”at) (2.1a)
u, u, 0

g — Cua—‘r (0224-023)74—6126—%— }vlzT(I", l) (21b)

Ou, U, oy
Drr:61154'26127—511§+P11T(’”af) (2.1¢)
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A =cnoy + 209, Az = ¢t + (e + €23)0 (2.1d)

where ¢;;, e, o, By, and py; are elastic constants, piezoelectric constants, thermal expansion coefficients,
dielectric constants, and pyroelectric coefficients, respectively. ¢; and D,, are the component of stress
and radial electric displacement, respectively. The equation of motion is expressed as

arr 2 o a2r ;t
9or (0, — Gap) u.(r,t)

= 2.2
or r p o2 (2.2)

where p is the mass density. In absence of free charge density, the charge equation of electro-statics is

0D, (r,1) n 2D,,.(r,t) —0 (23)

or r

In order to simplify calculation, the following non-dimensional forms are introduced:

Pu Oii . Bu ¥ D,,
= og=—— (i=r0), =4/ , D =—""__ 2.4
P o/ c11 By o Tocni ( b ¢ ey b T o Tor/c11 Py 24)
T(r,t) u,

r a fc1n Cyt
= —_— = — = — C = e = —
TO ’ u (x,.Tob’ é b7 § b7 4 p7 T b

Then, Egs. (2.1-2.3) can be rewritten as

o, —2—5+2c1 €+el%wr,(g,r) (2.5a)
o0 :clg—ng(c2+c3)g+e2%—zzn(g,f) (2.5b)
D, =e aé + 26, : a(é + i T1(E,7) (2.5¢)
aa%, 2(0,6— o) _ azua(fz, 7) (2.62)
DA D 2

where, a and b are the inner and outer radii of the hollow sphere, respectively, and Ty is the reference tem-
perature, the boundary conditions and the initial conditions are

o,(s,7) =Ny(7) o.(1,7) = Ni(1) (2.6c,d)

¢(S,T) = (f)s(’l,'), (f)(l,’[) = d)l(’c) (26evf)

N (2.6¢.h)
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From Eq. (2.6b), we have
1
D, (& 1) = ?d(f) (2.7)

where d(7) is an undetermined function to non-dimensional time 7.
Substituting Eq. (2.7) into Eq. (2.5¢), gives
0¢ u 1
5= a§+2e2£ ELCAR D (28)

Utilizing Eq. (2.8), Egs. (2.5a) and (2.5b) may rewritten as

o =1+ e%)% +2(e; + elez)E - e—;d(r) — (4 —ep)T(E 1) (2.9a)
o¢ ¢ ¢
61 =(c1 +eex) 5 g +(c2 4¢3 +2€2) % - %d(r) — (22— eyp))T1(E,7) (2.9b)

Substituting Eqgs. (2.9) into Eq. (2.6a), the basic displacement equation of thermo-electro-elastic motion
of a transversely isotropic piezoelectric hollow sphere is expressed as

W) 20u(Cr) HuEr) 1 QuEr) d)
e Ti o 2 —a e e +8(¢,7) (2.10)
where
H2:2(62+C3+2eg_cl_elez), C? =m, 1:—&, m=1+ej,
m m
1 or i T
g(f,f):; (/11—61P1)a—5+2(ﬂl—}~2+(92—€1)P1)2 (2.11)

where the detailed solution process for Eq. (2.10) is given in Appendix A.

2.2. Numerical results of the first example and discussions

Transient responses and distributions of a transversely isotropic piezoelectric hollow sphere subjected to
thermal shock, sudden mechanical load and electric excitation are, respectively, considered. A transitory
temperature change produced by a sudden electric current pulse is typically of a duration much less than
1 ps and may be expressed as

Ti(& 1) =H() (2.12)

where H(t) denotes the Heaviside function.

In the numerical calculations, the internal radius of the transversely isotropic piezoelectric hollow sphere
is taken as ¢ = 0.01 m, the material constants for the transversely isotropic piezoelectric hollow sphere are
selected as follows:

Cl] = C33 = 111.0 GPa Cyp = 125.6 GPa, Clp = 77.8 GPa, C13 = C3 = 74.3 GPa,
en =151 (C/m?), ep=e;3=-52(C/m?), a =2.0x10" (1/k),
oy =2.0x 10°%(1/k), p;, =—-25x10" (C/m’k), f,, =5.62x 107" (C*/Nm?),
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Cit __ Cpt
) (1-s)Cy — b—a’
the dimensionless radial coordinate, R1 = 3= = 7=¢ and the response time is taken as tl =10. Besides
the thermal shock load, 7T(¢&, ), in Eq. (2.12), a sudden mechanical load and electric excitation load are given

by

In the example, the ratio to wall thickness is s = 1/2. The dimensionless time is taken as t1 =

o.(s,7) =H(t) o, (l,7)=0
(,ZSS(S,‘L') =0 (,ZS](I,‘L') :H(T)

From Figs. 1, 2 and 5, it is seen that the radial stresses and the electric potential at the boundaries R = 0,
1 satisfy the given boundary conditions. Because of the reflection wave effect between the internal and exter-
nal boundaries, except the points at given boundary condition, transient responses at other points oscillates
dramatically as shown in Figs. 1-5. It is seen from Figs. 1 and 2 that the radial stress at R1 = 0.1 near the
internal boundary appears in equal amplitude oscillatory around zero and the radial stress at R1 =0.5
oscillates below zero. The maximum amplitude of radial compression stress is smaller than that of radial
tension stress. It is peculiar that because of thermo-electro-clastic interactions the hoop stress at the

(2.13)

3
fffff R1=0.0
2 ——— R1=0.1
1
GI‘
O -
i
'2 T T T T
0 2 4 6 8 10

11

Fig. 1. Response histories of the transient radial stresses in a transversely isotropic piezoelectric hollow sphere, where
Rl =r= 1] =%t

T b-a’  b-a"

0.4
——RI1=05
fffff R1=1.0
e
GF
-0.4 -
-0.8 . . ; .
0 2 4 6 8 10

11

Fig. 2. Response histories of the transient radial stresses in a transversely isotropic piezoelectric hollow sphere, where

— r-a — Cut
Rl =5=2, tl =34
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Fig. 3. Response histories of the transient hoop stresses in a transversely isotropic piezoelectric hollow sphere, where

—r-a — Cut
Rl =12, 11 = ;1.
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D
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— R1=0.0
-11 T T T T
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Fig. 4. Response histories of the transient electric displacements in a transversely isotropic piezoelectric hollow sphere, where

_r—a _ Cit
Rl = b—a’ = b—a’

1.0
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**** 1=0.5 Z2
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Fig. 5. Distributions of the transient electric potentials in a transversely isotropic piezoelectric hollow sphere, where R1 = =2, © = Lut

I
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external boundary of the transversely isotropic piezoelectric hollow sphere under sudden external pressure
appears tensional stress response which is different from response history of hoop stress in a transversely
isotropic hollow sphere under only mechanical load. Fig. 3 shows that the oscillatory amplitude of hoop
compression stress in the transversely isotropic piezoelectric hollow sphere is smaller than that of hoop ten-
sion stress. The response histories of electric displacement always are negative as shown in Fig. 4. It is seen
from Fig. 4 that the peak values of electric displacement decrease gradually from inner-wall to outer wall at
the identical time 71. The distribution of the electric potential in the transversely isotropic piezoelectric hol-
low sphere is shown in Fig. 5. It is seen in Fig. 5 that the electric potential at the external boundary equals 1,
which satisfy the prescribed electric boundary conditions (2.13), and the distribution of the electric potential
along radius is weak non-linear as time 1.

3. Thermo-electro-elastic transient response in a non-homogeneous orthotropic piezoelectric hollow cylinder
3.1. The constitutive relation and governing equation
A cylinder coordinate system (r,0,z) is used for an axisymmetric problem, so that we have uy = u, = 0,

u, = u,(r,t). The constitutive relation of a long non-homogeneous orthotropic piezoelectric hollow cylinder
subjected to a rapid change in temperature, 7(r, ), and electric fields is expressed as

u, u, o(r,t

O-rr:clla"'_chT"i_ell wér )—AIT(”J) (3.1a)
Ou, . oY (r,t)

= ¢y — i — T 1

g9 = C12 o +cn p +en o 2T (r,t) (3.1b)
Ou, oy (r,t

D, = ey or */311 lp( ) +pnT(r,1) (3.1¢)

A =cnoy 4 et + ci3os, Ay = oy + oty + C30t3, Az = €130 + €230 + C3303 (3.1d)

In the above formula, the non-homogeneity of material is characterized by a special law as follows:
Cij:RzNCij (l,]: 1,2,3), eli=R2NEh~ (l: 1,2,3), /li:RZNA,' (l: 1,2,3), (3 2)
Bi =R"By, py=R"Pu, p=R"p,, R=r/b .

where Cy;, Ey;, A;, By, P11 and pg are known constants of homogeneous material, and N can be an arbitrary
real number. g,(i =r,0) and D,, are the component of stress and radial electric displacement, respectively.

The equation of motion is expressed as

0c,, 0,—0 Ou, (r, t
90 w_, (r,1)

or ro or? (3:3)
In absence of free charge density, the charge equation of electro-statics is
aDr‘r(r7 t) Drr _
— =0 (3.4)
Substituting Eq. (3.2) into Egs. (3.1), (3.3) and (3.4), gives
0 )
g, = RzN “ + C1 + E1 d) Tl (R, ‘L') (353)

oR R OR
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Ou u 0
_ p2N e e _r_
G()—R |:C1 6R+C2R+E26R TQ(R,‘E):| (35b)
Ou u 0¢
_pw|p YU u op
D, =R [El 6R+E2R aR+Tp(R,r)] (3.5¢)
0o, o,— 0y N *u
OR R ot? (3.54)
oD.(R,t) D,
where

Cp Cy Cis Cys Ey;

Ci=—/, C=—, Cy=—", (C4=—7", E = =1,2),
T e ‘T YT VCiBi ( )

0ii Bll lﬁ(}", t) Drr‘ AiT(r7 Z) .
g = :}"707 = —_ y . = s T1R7T = l:1,2 36

o ( ), ¢ C b T5 (R, 7) o ( ) (3.6)

P“T(r,t) u, a C11 CVt
T(Ryt) =l oy g 9 o, = S 2
o(R7) VCiBu b b " Po b
The boundary conditions are expressed as

.(S,7)=0 o.(l,7)=0 (3.7a,b)
¢(S7 ‘C) = ¢a(f) d)(l,‘(f) = ¢b(f) (37Cﬂd)

where ¢,(7) and ¢,(t) are the given electric potential imposed on the internal and external surfaces,
respectively.
The initial conditions are given by

u(R,0)=0, #(R,7)=0 att=0, (3.8a,b)

where a dot over a quantity denotes its partial derivative with respect to time.
Solving Eq. (3.5¢), yields

D,(R,7) :%d(r) (3.9)

where d() is an undetermined function with respect to the dimensionless time <.
Substituting Eq. (3.9) into Eq. (3.5), yields
0 _ . Ou u

aR_Ela_R+E2]_e_Wd(T)+TP(R7T) (3103)
Ou

0, = RzN |:(1 + E%) R

+ (Cl + E]Ez)% - Tlp(R,‘L'):| —%d(‘[) (310b)

u

OR

u

+(C+E) %

gy = RZN |:(C] + E]Ez) — sz(R, ‘L'):| — %d(f) (310C)
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where
Tlp(R, ‘L') = T1 (R,‘L') — EITP(R,‘C), TQP(R,‘C) = T2(R,T) — Esz(R7T)

T}p(R,T) = T3(R,‘E) —E3TP(R7'C) (310d)

Substituting Egs. (3.10b) and (3.10c¢) into Eq. (3.5d), the basic displacement equation of thermo-electro-
elastic motion of a non-homogeneous orthotropic piezoelectric hollow cylinder subjected to thermal shock
is expressed as

o*u(R, 1) 1 du(R,7) Hu(R,t) 1 du(R,7) d(7)
WJFQNJF])E R R :C—i 202 +1R2(N+1)+G1(R,7:) (3.11)
where
(C2+ E3) —2N(Cy + E\E») S E,
le\/ 2 ) CL: 1+E]7 I:_—27
1 ;:El 1 . G-12)
— lp, - _
GI(R»T)l_’_E%[aR JrR(Tlp 217)]

where the detailed solution process for Eq. (3.11) is given in Appendix B.
3.2. Numerical results of the second example and discussions

Transient responses and distributions of stresses, electric displacement and electric potential in a non-
homogeneous orthotropic piezoelectric hollow cylinder subjected to thermal shock and a suddenly electric
potential on the external surface are, respectively, considered. A transitory temperature change produced
by a sudden electric current pulse is a typically of duration much less than 1 ps, and can be expressed as

T(r,t) =H(t) (3.13)

where H(t) denotes the Heaviside function.

In the numerical calculations, the basic material constants are taken as: C;; = C3;3=111.0
[GPa], sz =220.0 [GPa],C12 =77.8 [GPa], C13 = C23 =115.0 [GPa], El2 =15.1 [C/mz], E12 =15.1
[C/m?], E; =E;=-52 [C/m?], o5 =o03=0.0001 [1/K], o =0.00001 [I/K], By =35.62x10"°
[C?/Nm?], Py; = —2.5x107° [N/m?K] and po = 4350 [kg/m’]. In results, the internal radii of the non-
homogeneous piezoelectric hollow cylinder are taken as @ = 0.01 m, and the wall thickness ratio is taken
as S=1/2. The dimensionless time is taken as 7l = (1%;@ = bCTL;, the dimensionless radial coordinate,
Rl = % == and the response time is taken as 71 < 20.

The non-homogeneous piezoelectric hollow cylinder is subjected to thermal shock load, 7(r,?), in Eq.
(3.13), and an electric excitation which is expressed as

$(s,7) =0, ¢,(1,7)=H(q) (3.14)

Fig. 6 shows the response histories of the radial stress at the middle point (R1 = 0.5) of the piezoelectric
hollow cylinder for different N. From the curves, it is seen that the maximum amplitudes of radial stresses in
the piezoelectric hollow cylinder subjected to thermal shock and an electric excitation vary as different
material exponent N. Figs. 7 and 8 show the responses of the hoop stresses at the internal and external sur-
faces, respectively. From the curves, it is seen that the peak values of the hoop stresses decreases as the ra-
dial point RI1 increases. Figs. 9 and 10 show the radial electric displacements at the internal boundary
(R1 =0.0) and the external boundary (R1 = 1.0) of the hollow cylinder for different values of N. It is seen
that the response histories of the electric displacement in the piezoelectric hollow cylinder always appear in
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'
o)

0 5 10 15 20

Fig. 6. Transient response histories of the radial stresses in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where R; =0.5.

0 5 10 15 20

Fig. 7. Transient response histories of the hoop stresses in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where R, = 0.

0 5 10 15 20

Fig. 8. Transient response histories of the hoop stresses in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where R, = 1.
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6
—— N=-1
1 N=0
cimie N=1
-6 1 AT R N
Dr
12 1
18 : : :
0 5 10 15 20
T

Fig. 9. Transient response histories of the electric displacements in a non-homogeneous orthotropic piezoelectric hollow cylinder for
different NV, where R; =0.

4
—— N=-
fffff N=0
0 —mns N
D, -4
-84
-12 , , ,
0 5 10 15 20
T

Fig. 10. Transient response histories of the electric displacements in a non-homogeneous orthotropic piezoelectric hollow cylinder for
different N, where R; =1.0.

1.00 —
075 1
0.50 1
0254 -
e e N=1
000 ¥ N=0
- N=-
-0.25 : : : :
00 02 04 06 08 1.0
R']

Fig. 11. Distributions of the transient electric potentials in a non-homogeneous orthotropic piezoelectric hollow cylinder for different
N, where 71 = 10.



H.L. Dai, X. Wang | International Journal of Solids and Structures 42 (2005) 1151-1171 1163

negative. Fig. 11 illustrates the distributions of electric potential at the response time, t1 = 10, for different
material exponent N. The calculated electric potentials equal zero both at the internal and external surfaces,
which satisfies with the prescribed electric boundary conditions.

4. Conclusions

1. In example 1, it is seen that the response histories and distributions of stresses, electric displacement
and electric potential in a transversely isotropic piezoelectric hollow sphere are interaction each other.
Thus, it is possible to control the response histories and distribution of thermal stresses in the transversely
isotropic piezoelectric hollow sphere by applying a suitable mechanical load or electric excitation load to
the structure, or to assessment the response histories and distribution of thermal stresses in the transversely
isotropic piezoelectric hollow sphere by measuring the response histories of electric potential in the
structure.

2. In example 2, the non-homogeneity of material is characterized by N value based on the basic material
constants. For N = 0 the material property of the orthotropic piezoelectric hollow cylinder is homogeneity.
For N # 0 the material property of the orthotropic piezoelectric hollow cylinder is non-homogeneity. The
thermo-electro-elastic responses in the orthotropic piezoelectric hollow cylinder are mainly dependent on
non-homogeneity properties of material. Therefore, one can design the non-homogeneity property, N, of
piezoelectric structures to decrease the amplitude of stresses and to increase the response amplitude of elec-
tric signal in the piezoelectric structures in order to satisfy the requirement of engineering applications.

3. Because of the interaction between elastic deformation and electric field, a sudden mechanical load
induces the response of electric displacement and electric potential in a piezoelectric structure. Likewise,
a sudden electric potential also causes the dynamic stresses responses. Thus, applying a suitable electric
excitation to a piezoelectric structure can control the responses and distributions of dynamic stresses in
the piezoelectric structure.

4. Though it may be convenient and straightforward that to employ a numerical solution (Finite element
method) solves some problems, it is more effective that to employ an analytical method exactly describe the
interaction effect of thermo-electro-elastic waves and the effect of the non-homogeneity properties on ther-
mo-electro-elastic transient response in piezoelectric structures subjected to arbitrary thermal shock, sud-
den mechanical load and electric excitation.

5. It is concluded from the above analyses and results that the present method is simple and validated. So
it can be used as a reference to solve other transient problems of the coupled thermo-electro-elasticity.
From the knowledge of the response histories of transient stresses, electric displacement and electric poten-
tial in piezoelectric structures, various thermo-electro-elastic elements under thermal shock load, sudden
mechanical load and transient electric excitation can be designed to meet specific engineering requirements.
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Appendix A

The general solution to the governing equation (2.10) of thermo-electro-elastic motion in a transversely
isotropic piezoelectric hollow sphere can be decomposed into
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u(&, 1) = ug(&,7) +ua(, 1) (A1)
where u,(&, 1) and u &, 1) are, respectively, a quasi-static solution which satisfies inhomogeneous boundary
conditions and a dynamic solution which satisfies homogeneous boundary conditions, to Eq. (2.10).

The quasi-static solution u,(&,7) must satisfy the following equation (A.2a) and the corresponding
inhomogeneous boundary conditions (A.2b).

azuq(f,r) 2 6uq(§,‘c) H2 . d(7)
au‘](év T) uq(é’ T) _ P
e o | Th U=sD (A.2b)
Solving Egs. (A.2) (Lekhnitskii, 1981), we have
ug(¢,7) = A1(&, 1) + A2 (SN (1) + A3(E)N1 (1) + 44(E)d (1) (A3)
where
A1(E,7) = g (E,7) + LiLs&" " + LyLy& "0
L n—0.5 L, —(n+0.5)
A,(¢) = Tr & 5 —1+e%f
e\ Ll —n—1.5 zn—0.5 L, n—1.5 g—(n+0.5)
A3(€) 1+ %S é + l+te 2S 6
” . 1 n—0. —(n+0. [
L[ n+15:| 05+L2L5L_2_S( 05)]§< 05)_H—2§
¢ ¢
— /025 +H2, g1(€7r) — 671170,5/ éZ'FI |:/ £n+l.5g(§7r)dé:| dé (A4)
, h 1
£(¢,1) =g1(&,7) +Eg(f,f)7 L= (n+h—0.5)[s" 05 — g (19)]
1 e (h—11I
L= sy BTrrat e
1
Ly _;[Tlp(s 7)) — T1,(1,7)s "] — [gy(s,7) — g5 (1, 7)s~ 1Y)
1

L=~ [T(5,9) = (1,50 = [g3(6.7) — gl )" )

Substituting Eq. (A.1) into Eq. (2.10) and Egs. (2.6g,h) and utilizing Eq. (A.2) provides an inhomoge-
neous dynamic equation with homogeneous boundary conditions, and the corresponding initial conditions

for u é,1)

Qug(é, 2 duy(E, H? 1 [Qug(é, Qu, (€,
S e g [T T (A
a””’ég”)+h”"<§’f) =0 (=s1) (A.5b,c)

audéé,O) n Ouy(&,0)

T ot
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In order to transform Eq. (A.5a) into a normal Bessel equation, a new dependent variable f{&, 7) is intro-
duced as

uy(&,1) = EVf (6 ) (A.6)
Then Eq. (A.5) is rewritten as

TfEr) 16 R L [Bf(&1) | Qua(ér)

652 Eof ? (&)= C_z o + o2 (A.7a)
of (s, of (1,
4féséi) +hf (s,7) = 0, 7]{(@5 Dm0 =0 (A7)
of (&0
re0 =0, LU (ATde)
where
(h—0.5) .
Ui (&, 1) = Bi(&, ) + Ba(EN, (1) + B3 (EN1(7) + Ba(&)d(2), hi = — (i=s,1)
R2=025+H* Bi(&1)=E4,(E 1), Bi(¢)=E"4,(8),(i=2,3,4) (A.8)
Define a finite Hankle transform f{r, ) such that (Cinelli, 1965)
1
Flh) =HIF (0] = [ &(& 0Galkiae (A9)
Then the inverse Hankle transform is given by
. _ 7(ki7 I)
&)= kz iy Orlkid) (A.10)
where
1
Fll) = [ €& e, Galkd) = Taki)T, — T, Talki) (A1)

In the above formula k; (i = 1,2,...,n) are a series of positive roots of the natural eigenequation as follows:
JY1—J1Y, =0 (A.12)
and
Js = kiR (kis) + hoJ r(kis), Jy = kiJ % (ki) + hiJr(k;)
Y, =k Yy (kis) + hYr(kis), Y1 =kYy(k:)+hYr(k:)
where Jg(k;£) and Yg(k;&) are the first and the second kind of the Rth-order Bessel function, respectively.
w; = Cr, k; expresses the natural frequencies.

Applying the finite Hankel transform (A.9) to Eq. (A.7a) and utilizing the corresponding boundary con-
dition (A.7b,c), we have
1 [@f(ki,t)  iag(kiy7)

—k2f (k1) = = A.14
lf( ’T) Ci 6‘52 + arz ( a)

(A.13)

where
g (ki,t) = Hlug (¢, 7)] (A.14b)
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Applying the Laplace transform to the two sides of Eq. (A.14a) and utilizing the zero initial conditions
(A.7d,e), yields
—k; CLf (ki p) = Pf " (ki, p) + PP, (i, p) (A.15)

where p is the parameter of the Laplace transform.
The inverse Laplace transform for Eq. (A.15) gives

Sf ki, t) = =ity (kiy ©) + @iftig (ki, ) sin(w;7)] (A.16)
where
iy (ki 7) sin(w;t) = /I[Fl (kiyt) + Ba(ki)N(t) + B3 (ki) )N1(2) + By(k:)d(2)] sinfw;(t — ¢)]dt
0
and
Bi(ki,t) = H[B1(&,7)],  Bj(ki) = H[B;(¢)] (j=2,3,4) (A.17)
Substituting Eq. (A.17) into Eq. (A.16), yields

M“

ki, t) = Ii(k Ii(k;, ) (A.18)

where

Ili(kh T) = _El (k[7 T) + CU[/ FI (k,', t) Sin[w,—(f - t)}dl
0

Ik, ) = —N,(2) + / " NL(e) sinfor(z — £))de
° (A.19)

Ll ©) = —Ny (2) + o / N1 (1) sinfor( — )]

Lk 7) = —d(7) + o / " d(6) sinfo(c — 0)]de

Substituting Eq. (A.18) into Eq. (A.10), the dynamic solution for inhomogeneous dynamic equation
(A.7a) with homogeneous boundary conditions can be obtained as follows:

f(&) = Ek: G;EZ)@ []U(kia 1) + Bj(kiﬂii(knf)] (A.20)

From Eqgs. (A.20), (A.6), (A.3) and (A.1), the solution of the basic displacement equation (2.10) of ther-
mo-electro-elastic motion in the piezoelectric hollow sphere is expressed as

u(&,t) = A1(&,7) + 42N (1) + A3(ON1 (1) + 44(S)d(7)
+3 % [11, ) ; I, k,,r] (A21)

=2

ki

Noting that in the above expression d(t) still is an unknown function which is related to the electric dis-
placement. Thus, it is necessary to determine d(z) in the following.
Integrating Eq. (2.5¢) and utilizing the corresponding electric boundary condition (2.6¢), yields

P&, 1) = @1(S 1) + P2A)N(T) + P3(N1 (1) + Pa(Q)d(7) + Z Psi(S)Fi(t) + (1) (A.22)
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where

@1(5,‘[)—61[ (f T

Ll P £V Gr(kiS) 5
+2€2/s E[Al(g,f)—kziwf;l(ki,f)

é_OSGR ké —S_O GR kS
zk: (kic) (kis))

F(k) Bk T)]

1

dé + p / T(&,7)dé (A.23a)

as(6) = o) = Y e GR<kfs>>gz<ki>]

¢ —0.5 o
+2e; / é lAz(f) - %};()"’@Bz(ki)

@2(5) =€

de (A.23b)

ki !

D3(¢) = e [A3 Z L GR(kii)ﬂ(;[; A GR(k”s))Ea(ki)]

5 OSGRké
12 /- C
[ -y S )

dé (A.23¢)

@4(5) = e |j44 Z 67 ' GR(k,i) _ S*OASGR(kis))

F(k;) B“(k")]

+ 2e, / l zk: F((;l’;ké k;) dé+g (A.23d)
o (EGr(KiC) = s Gyllis) o, [F 1 GalkiS)
D5(¢) = e F ) +22/S 5 Ry dé (A.23e)
Fi(t) = Fu(t) + Ba(ki)o; / T d(1) sin[w;(t — 7)]dt (A.23f)

Fll-(r):wl/ 1 (ki t) sinfew;(t — ¢)]dt + B, (k / N, (2) sinfw;(t — ¢)]d¢

+ Bs(k / Ny () sinfw;(t — ¢)]d¢ (A.23g)

When ¢ =1 at the outer boundary of the transversely isotropic piezoelectric hollow sphere, Eq. (A.22) is
rewritten as

¢1(t) = D1(1,7) + P2 (1)Ny(7) + P3(1)N1(7) + Pa(1 Jrz@sl ¢,(7) (A.24)

Substituting 7 = 0 into Eq. (A.24), leads to

$1(0) = ¢,(0) — @1(1,0) — Do (1)N,(0) — D3(1)N,(0) — Z%( )Fi(0)

d(0) = 00 (A.25)
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Substituting Eq. (A.23f) into Eq. (A.24), yields
I(t) =M d(7) + ZM”/ d(t) sin[w;(t — ¢)]dt (A.26)
i 0

where

9(t) = ¢y(1) — dy(t) — @1(1,7) — Bo(1)N,(t) — D3(1)Ny(x) — Z ®s,(1)F (1)

My = ®4(1), My = &s;(1)Bas(k;)e;

(A.27)

It is seen that Eq. (A.26) is the Volterra integral equation (Kress, 1989) of the second kind. In the
following, we will solve Eq. (A.26) by using the recursion formula based on linear interpolation function.
In order to show the method of solving the integral equation (A.26), the time interval [0, 7] is divided into n
subintervals, that is, the discrete time points are 7o = 0,7y, 7,,. . .,7,. Then the interpolation function at the
time interval [z;_;,7;] is expressed as

d(7) = n?(t)d(rj,l) + n}(t)d(rj) (Gj=12,...,n) (A.28a)
where
0 T — 'L'j 1 o T — ijl P
e = = =12 (A28)

Substituting Eq. (A.28) into Eq. (A.26), gives

J

(1)) = Md(z;) + ZMZi Z[Rijkd(fkfl) + Sid ()] (A.29)
i k=1
where
Ry — / 0 (6) sinfooi(z — H)de (A.30a)
Syt = / n(0)sinfos(c — 0)dr (k=1,2,....j, j=1,2,....n) (A.30D)
7 —1
From Eq. (A.29), we have
j-1
(1)) = 2 Moi 3 [Ripd (tit) + Sipd (vi)] — d(tj-1) 3 MaiRy;
d(t;) = S ' G=1,2,...,n) (A.31)

M + ZMZiSijj

Substituting d(0) in Eq. (A.25) into Eq. (A.26), we can obtain d(t;) (j = 1,2,...,n) step by step, and deter-
mine d(t). Substituting d(t) obtained from Eq. (A.31) into Eq. (A.21), gives the exact expression of the solu-
tion, u(¢,7), for the basic equation of thermo-electro-elastic equation (2.10) in the transversely isotropic
piezoelectric hollow sphere. Thus, the corresponding transient stresses a,(&, 1), g4(¢, 7), the transient electric
displacement D,(&,7) and the transient electric potential ¢(¢&,7) are easily obtained from Egs. (2.5a—c),
(A.22), and (A.21).
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Appendix B

A new dependent variable W(R,7) is introduced as
u(R,7) = RVW(R, 1)
Utilizing the Eqgs. (B.1), Egs. (3.11), (3.7) and (3.8) are rewritten as

odw 1ow H'W 18w d()

wRE R q e gt R
.. OW(R,1) W(R,t)
. OW(R,7) W(R,t)
R=1: oR h R —92(‘5)
W(R,0)=0 W(R,0)=0
where
C,+EE
_ 2 2 _ 1 12_ __ pN
H=\/N*+H, h_71+E$ N, Gy(R,t)=R"Gi(R,1)
0,0 =5 v 7 (s 0(7) = — ' [Erd(7) + Ty (1
I(T)_l—i—E% ls(2N+l)+ lp( ) 2(T)—TE%[ 1d(7) + lp( ;7))

—Uj (R) = RNM()(R), U1 (R) = RNU()<R).
The general solution to the governing equation (B.2) can be decomposed into
W(R,t)=W,R, 1)+ WaR, 1)

Here, the quasi-static solution W,(R,t) must satisfy the following equations:

W, (R,t) 1 3W,(R,1) HW,R,x)  d)
aRZ E OR - RZ _IRN+2 +G2(R7T)
B oW ,(R, 1) W,R,t)
. O (R,T) W,R,t)

The general integral of Egs. (B.5a) is of the form
W4(R,7) =Y (R,7) + Y5 (R)d(7)
In the above formula, we have

RZH _ S2H S2H
2H>  h—H

R R
wl(R,r):R’H/S R2H’1/S RV G,y (R, 7)dRdR + R q5(1)

SN+H+1T11](S, T) R,H
(h—H)C]
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(B.2a)

(B.2b)

(B.2¢)

(B.2d,e)

(B.5a)

(B.5b)

(B.5¢)

(B.7a)
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H R _— R HIN1) RZH _SZH SZH H ElstN H
R) = IR~ RM=1 [ RHHNED dRAR - R4 —Z R B.7b
pm = [ [ ““[ 2 h—H} Yo-mat B
I(1 -85~ Yy g
=g |(H- e e
83 gzl( h)g, + HiN +Ci( S,
B 2H 1 I—SN’”+1—S2H
ST AN m+n T NtYH\N-H ' 2H )
1
q3(7) = g4{(H —h)q\(t) — 4,(7) +F[T1p(1,f) = STT,(S, T)]},
L
1 R 1
q,(1) = / R / R™NHGy (R, 1) dRAR,  g,(1) = / R™VHG, (R, 7)dR (B.8c-h)
N S N

Substituting (B.4) into (B.2) and utilizing (B.5) provides an inhomogeneous dynamic equation with
homogeneous boundary conditions for W4R, 1)

O*W4(R,7) 1 0W4(R,1) H? 1 [O°Wa(R,t) W, (R, 7)
w TRk rgV®RI= c? [ 7 o ] (B-9a)
aWd(RaT) Wd(R7T) _ aWd(er) Wd(R7T) _
R TR = 0, T = 0 (B.9b)
OW4(R,0) W, (R,0
Wd(R, 0) + Wq(R, 0) = U (R) d( ’ ) + q( ’ ) =1 (R) (B9C,d)

ot ot

In the above equation, W,(R, 1) is the known solution as shown in Eq. (B.6).

Utilizing the solving processes of Egs. (A.9)—(A.31) as shown in Appendix A, the solution, WR, 1), for
Eq. (B.9) can be casily obtained. Thus, the exact expression of the solution u(R, ) is given for the governing
equation of thermo-electro-elastic motion in a non-homogeneous orthotropic piezoelectric hollow cylinder.
The corresponding transient stresses ¢,(R, 1)y (R,7), the transient electric displacement D, (R,t) and the
transient electric potential ¢(R, 1) are easily obtained.
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